The structure of tyrosine aminotransferase. Evidence for domains involved in catalysis and enzyme turnover.

نویسندگان

  • J L Hargrove
  • H A Scoble
  • W R Mathews
  • B R Baumstark
  • K Biemann
چکیده

The primary structure of tyrosine aminotransferase, as deduced from the nucleotide sequence of complementary DNA, was confirmed by fast atom bombardment mass spectrometry of tryptic peptides derived from the purified protein. Limited digestion of the native enzyme with trypsin released an acetylated, amino-terminal peptide; the new amino terminus in the modified enzyme was Val65. Endogenous proteases generated a chromatographically separable form of tyrosine aminotransferase that began at Lys35. Neither trypsin nor the other proteases altered the catalytic activity of tyrosine aminotransferase. Reduction of the holoenzyme with sodium borohydride yielded a major tryptic peptide containing phosphopyridoxamine bound to lysine 280, which probably functions in transamination. The carboxyl terminus of tyrosine aminotransferase contains features that typify proteins with short half-lives; it includes two negatively charged, hydrophilic segments that are enriched for glutamyl residues and are similar to a PEST region in ornithine decarboxylase (Rogers, S., Wells, R., and Rechsteiner, M. (1986) Science 234, 364-368). Tyrosine aminotransferase belongs to a superfamily of enzymes which includes aspartate aminotransferase and can be aligned so that many invariant, functional residues coincide. Like the isoenzymes of aspartate aminotransferase, tyrosine aminotransferase may contain two domains, with a central, catalytic core, and a small domain made up of both amino- and carboxyl-terminal components. We speculate that the exposed small domain may confer the unusually rapid degradative rate that characterizes this enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Janus: prediction and ranking of mutations required for functional interconversion of enzymes.

Identification of residues responsible for functional specificity in enzymes is a challenging and important problem in protein chemistry. Active-site residues are generally easy to identify, but residues outside the active site are also important to catalysis and their identities and roles are more difficult to determine. We report a method based on analysis of multiple sequence alignments, emb...

متن کامل

Evidence for Histidine Residues on Plasma Membrane Phosphatidate Phosphohydrolase from Rat Liver

Objective(s) Phosphatidate phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid to yield Pi and  diacylglycerol. Two different forms of PAP in rat hepatocyte have been reported. PAP1 is located in cytosolic and microsomal fractions and participates in the synthesis of triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine, whereas the other form of phosphati...

متن کامل

Role of coenzyme in aminotransferase turnover.

The role of coenzyme in determining intracellular contnet of pyridoxal enzymes was assessed by analyzing effects of pyridoxine deficiency on the rapidly degraded, readily dissociable tyrosine aminotransferase (EC 2.6.1.5) and the slowly degraded, nondissociable alanine aminotransferase (EC 2.6.1.2) of rat liver. Synthesis of the tyrosine enzyme was reduced, leading to a decreased amount of this...

متن کامل

Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase.

Two refined structures, differing in alkali metal ion content, of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase (DGD) are presented in detail. The enzyme is an alpha 4 tetramer, built up as a dimer of dimers, with a subunit molecular mass of 46.5 kDa. The fold of DGD is similar to those of aspartate aminotransferase, omega-amino acid aminotransferase and ty...

متن کامل

Evidence for the Essential Arginine and Histidine Residues in Catalytic Activity of Glucose 6-Phosphate Dehydrogenase from Streptomyces aureofaciens

Glucose 6-phosphate dehydrogenase (G6PD) was purified from Streptomyces aureofaciens and inactivated with butanedione and diethylpyrocarbonate. Incubation of the enzyme with butanedione resulted in a rapid activity loss (80%) within 5 min, followed by a slow phase using a molar ratio to enzyme concentration of 100. Fluorescence studies showed a conformational change in the butanedione-modified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 264 1  شماره 

صفحات  -

تاریخ انتشار 1989